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Introduction

With the passage of No Child Left Behind (NCLB), attention has focused on the need
for evidenced-based educational research, particularly educational policies and interventions
that rest on what NCLB refers to as ”scientifically based research”. In practice, this focus
on scientifically based educational research has translated into a preference for research
studies based on the principles of randomized experimental designs. Indeed, Part A., Sec.
9101 of the No Child Left Behind Act, under the definition ”Scientifically Based Research”
states

”The term ’scientifically based research’ (A) means research that involves the
application of rigorous, systematic, and objective procedures to obtain reli-
able and valid knowledge relevant to education activities and programs; and
(B) includes research that ... (iv) is evaluated using experimental or quasi-
experimental designs in which individuals, entities, programs, or activities are
assigned to different conditions and with appropriate controls to evaluate the
effects of the condition of interest, with a preference for random-assignment
experiments, or other designs to the extent that those designs contain within-
condition or across-condition controls;...”

The ostensible reason for stating a preference for ”random-assignment experiments” is
the argument that the underlying theory of randomization provides a sound foundation for
unambiguous causal inferences. The preference for randomized experimental designs stated
in NCLB suggests that it is the ”gold standard” for educational research. In fact, the
standards of the U.S. Department of Education’s Institute for Educational Sciences (IES)
sponsored ”What Works Clearinghouse, brooks no room for non-experimental studies as
meeting the standard. From the standards document,

Studies that provide strong evidence for an interventions effectiveness are char-
acterized as Meet Evidence Standards. Studies that offer weaker evidence Meet
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Evidence Standards with Reservations. Studies that provide insufficient evidence
Does Not Meet Evidence Screens. In order to meet evidence standards (either
with or without reservations), a study has to be a randomized controlled trial
or a quasi-experiment with one of the following three designs: quasi-experiment
with equating, regression discontinuity designs, or single-case designs. (pg. 1,
italics theirs).

Also, in a 2006 report prepared for the IES by the Coalition for Evidenced-Based Policy,
it is clearly stated that ”Well-designed and implemented randomized controlled trials are
considered the ”gold standard” for evaluating an interventions effectiveness, in fields such
as medicine, welfare and employment policy, and psychology.” (pg. 1, emphasis, theirs).
For the purposes of this paper, those who advocate the experimental approach to policy
analysis will be referred to as experimentalists

Although the methodology of randomized experimental designs can provide a strong
basis for evaluating causal claims, it does not preclude the possibility that sound causal
inferences can be drawn from non-experimental/observational settings. The choice of ex-
perimental or non-experimental designs is dependent on a number of factors and should
not be based on an ill-defined notion of ”scientifically-based research” or the presumption
that any one methodology of inquiry constitutes the ”gold-standard” of quality. In the
context of causal inferences, there are strengths and weaknesses to both approaches. As
will be described below, the randomized experimental design approach has the advantage of
testing a well defined, albeit simple, counterfactual claim. However, experimental designs
are typically employed to address relatively simple problems that fit a clinical trials-type
model. In what will follow, I will argue that randomized experimental designs (a) are not
suited to providing insights into the complexities of the educational system, (b)they are not
structured to unpack the specifics of the treatment mechanisms operating as causal factors,
(c) they do not provide an approach for testing numerous and more realistic counterfactual
propositions, and finally (d) their efficacy in ruling out potential confounds can only be
guaranteed in infinitely large samples.

In contrast to the experimental design approach, there exists a non-
experimental/observational approach to causal inference that is grounded in classical macro-
economics and the method of simultaneous equation modeling. The econometric approach
has had a long history in educational, psychological, and sociological research under the
names path analysis and structural equation modeling. I argue in this paper that the econo-
metric approach is suitable for complex problems in educational policy insofar as (a) it is
suited to providing insights into the complexities of the educational system (b) the relative
strength of counterfactual claims can be tested in concert with other counterfactual claims,
(c) econometric models can be extended to handle unobserved heterogeneity, providing a
way to examine how causal hypotheses operate in unobserved sub-populations, (d) multiple
counterfactual conditional hypotheses can be examined, and (e) the approach doesn’t rely
on the hope of successful random assignment, and (f) it is readily suited for forecasting
the effects of policies and interventions out-of-sample. These issues will be discussed in
more detail below. However, for the econometric approach to be successful in the domain
of educational research, a deeper synthesis of modern work on causal inference is required.
Those who advocate the econometric approach to policy analysis will be referred to as
structuralists.
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The problem of estimating causal effects in educational research is of utmost impor-
tance, as we can all agree that it is crucial to provide a sound evidence base on which to test
educational policies and interventions. Indeed, a recent monograph by Schneider, Carnoy,
Kilpatrick, Schmidt, and Shavelson (2007) dealt explicitly with this issue by comparing and
contrasting the experimental design approach with approaches to causal inference gleaned
from observational and non-experimental designs in education. The Schneider et al (2007)
monograph is to be commended for its emphasis on supporting the development of large
scale educational databases to be used to test causal claims in education (a topic I will
return to later in this chapter). However, the monograph did not provide an updated view
of the philosophical or methodological developments relevant to a full understanding of how
causal inference can be warranted using large scale databases. Their monograph does not
cite philosophical work on counterfactual theory, nor does it provide a discussion of the
major debates surrounding the limitations of the treatment effects approach in contrast
to modern thinking relevant to a structural approach to educational research. Thus, the
purpose of this chapter is to provide a review of modern philosophical and methodological
positions on causal inference, and to synthesize these positions in the context of structural
empirical educational research.

At the outset it must be noted that the topic of causation and causal inference is
enormous and space limitations preclude a comprehensive literature review and synthesis.
Therefore, the literature examined in this chapter is highly selective and does not represent
all of the scholarship on the problem. With this caveat in mind, the chapter will begin
with a brief overview of David Hume’s notions of causation as it is Hume’s writings that
permeate much of the relevant theoretical and practical work that followed. The chapter
then examines the standard critique of Hume. Although there are serious critiques of Hume’s
position, his writings set the groundwork for the experimental design tradition as embodied
in the work of J. S. Mill, D. Campbell and J. Stanley, and more recently in the Donald
Rubin and Paul Holland’s model of causal inference. The experimental design tradition is
then elucidated. A critique of the experimental design approach by Worrall (2002, 2004) is
then discussed. The chapter then reviews somewhat more modern conceptions of causation,
particularly the work of Mackie (1980) and Woodward (2003). I focus mainly on Mackie
because, as I will argue, his work on counterfactuals serves to bridge the divide between the
experimental design tradition and the econometric tradition. The chapter then proceeds to
a discussion of causal inference from the econometric tradition embodied in the early work
of Haavelmo, and more recently in positions put forth by Hoover (1990, 2001) and Heckman
(2000, 2005). Focus in this section is on the idea of strengthening causal inferences in the
context of observational studies, i.e. examining the causes of effects so as to provide more
accurate predictions derived from policy counterfactuals. Next, I advance an argument
that the structural approach is better suited to a science and practice of educational policy
analysis than the experimental approach. I adopt the manipulationist view of causal analysis
(Woodward, 2003) embedded the econometric approach but also bringing in Mackie’s earlier
ideas on counterfactual propositions. The chapter closes with a general conclusion outlining
some of the important work that is missing from this review.
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Early Historical Foundation

Providing a review of the historical foundations of the problem of causation is a
difficult task. One can start by examining work dating far back in recorded history - at least
as far back as the ancient Greeks and specifically Aristotle. However, for the purposes of a
chapter that attempts to review the problem of causal inference as it relates to education
policy analysis, it is convenient to start relatively more recently with the work of David
Hume. The rationale for beginning with Hume is two-fold. First, As discussed in Hoover
(2001) Hume’s work on problems of causation stemmed from problems of economic policy
analysis and therefore may be relevant to educational policy analysis. Indeed, Hume made
very important contributions to theory of money as it was understood in the 18th century.
Second, much subsequent work on problems of causal inference can trace their origins to
Hume’s essential insights.

Hume’s Philosophy of Causation

Hume’s position on causation is contained in two of his seminal books: A Treatise
of Human Nature (THN, 1739, Book I, Part III) and An Enquiry Concerning Human
Understanding (EHU, 1777, Sections IV-VIII). To begin, in line with the philosophy of
empiricism of his time, Hume viewed all human perception as arising from sense impressions.
Intellectual ideas were no different and were also considered by Hume to be based ultimately
in sense impressions, but perhaps of a more ephemeral sort. Thus, for Hume the question
arises as to what constitutes the sense impressions that give rise to the perception of a
necessary connection between events.

For Hume, the outward sense impression that leads to the perception of necessary
connection is one of the constant conjunction of events. Using the famous metaphor of
billiard balls colliding with one another, Hume argued that three elements are required to
give rise to an inward idea of cause and effect. The first requirement is spatial contiguity,
with one ball moving after it is touched by another. The second requirement is that the
cause precedes the effect. The third requirement is necessary connection in the sense that
the cause must reliably give rise to the effect.

In Hume’s analysis, the first two requirements reside in the outward sense experience,
while the last requirement, the inner idea of necessary connection, arises in the mind. For
Hume, the idea of a necessary connection arising from the empirical experiences of contiguity
and constant conjunction gives rise to the inner idea of necessary connection.

It appears that Hume is drawing the negative conclusion that we can have no outward
knowledge of necessary connection or, for that matter, the forces of nature at all. This view
is consistent with Hume’s classic critique of induction which he articulates in THN. Hume
writes, ”There can be no demonstrative arguments to prove that those instances, of which
we have had no experience, resemble those, of which we have had experience” (THN Book 1,
Part 3, Sect. 6, italics Hume’s)”. For example, when an individual first experiences a billiard
ball colliding with another and causing the second ball to move, that individual cannot
logically form a general rule about future events. However, upon witnessing numerous
instances of the same conjoined events, that individual will feel compelled to claim that they
are necessarily connected, with one billiard ball moving, referred to as the cause and the
other the moving upon being struck, referred to as the effect. Thus, necessary connection
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comes from the experience of numerous similar instances of conjunction. Hume argued
though that this inductive fallacy is not mitigated by experiencing numerous like events
any more than the experience of a single event. The only difference is that the experience
of numerous instances of the event (unlike the single instance) leads the individual to feel
that they are connected, and that now forecasting the future events is justified. This feeling
of necessary connection is a habit or ”custom” of the mind Hume (1739).

At first glance, it appears that Hume was espousing an anti-realist position. However,
as pointed out by Hoover (2001), Hume was a realist in the sense that he believed that there
were indeed actual forces of nature independent of our senses that cause events to take place.
But, Hume denied that necessary connection is independent of our senses. Returning to the
metaphor of the billiard ball, Hume accepted that there were natural forces at work that
caused a billiard ball to move upon being struck by another billiard ball - Hume simply
believed we could not know what those forces were. From Hume, ”[W]e are never able, in
a single instance, to discover any power or necessary connexion; any quality, which binds
the effect to the cause, and renders the one an infallible consequence of the other” (EHU,
Section 7, Part 1, pg. 136)”.

Despite this rather negative conclusion, Hume argued that there was virtually nothing
more important than the understanding of cause and effect. Hume wrote ”By means of it
alone we attain any assurance concerning objects, which are removed from the present
testimony of our memory and senses”. He further stated ”The only immediate utility of
all sciences, is to teach us, how to controul and regulate future events by their causes”.
Given Hume’s view that a causal connection arises in the mind as a function of observing
the constant conjunction of events, he arrived at his definition of causation - viz

”[W]e may define a cause to be an object, followed by another, and where all
the objects, similar to the first, are followed by objects similar to second. Put
another way ”...where, if the first object had not been, the second never had
existed” (Italics, Hume’s).

What is particularly noteworthy about this definition is the second part. What ap-
peared to Hume as a synonymous rephrasing of his definition of causation is, in fact, two
different ways of considering cause. The latter part, which is of major concern in this chap-
ter, concerns the role of the counterfactual conditional proposition in a theory of causation.
The role of the counterfactual conditional proposition figures predominantly in later theories
of causation and will be a major focus of this chapter.

Critiques of Hume

Hume’s analysis of the problem of causation has been criticized on numerous grounds
and was nicely summarized by Mackie (1980). For Mackie, perhaps the most serious problem
relates to the condition of constant conjunction. Specifically, the argument that necessary
connection arises in the mind after experiencing the constant conjunction of events, implies
that constant conjunction is, indeed, constant - in other words, that the conjunction of
events will always take place. But, by Hume’s own critique of induction, this assumption
is not tenable.

On the same point, Mackie (1980) noted that not all experiences of constant con-
junction can sensibly give rise to the idea of necessary connection. For example, Mackie
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asked ”...are there not causal sequences which nevertheless are not regular?” (1980, pg. 4).
Mackie then answered his own question by giving an example of a coin toss. A coin toss is
an indeterministic process, whereby each time I toss the coin, either it will land heads or
land tails. Thus, on the one hand, tossing a coin is not a regular process, but on the other
hand, surely my tossing the coin caused it to land heads. Mackie (1980) even questioned
the necessity of assuming temporal precedence. He asked if there were not causes that
could occur simultaneously with events. This latter concern is particularly crucial in the
context of economic modeling as statistical models for supply and demand assume simulta-
neous causation. (However, see Fisher, xxxx, for a discussion of the some of the temporal
assumptions associated with simultaneous equation modeling).

More recently, Pearl (2000) pointed to three problems with Hume’s definition of cau-
sation. First, regularity, or correlation is simply not sufficient for causation. Second, Pearl
argues that it is too strong to suggest that Hume’s second aspect of causation - namely
counterfactual sentences, is comparable to regular succession. That is, regular succession
is based on observation and counterfactuals are mental exercises (Pearl, 2000, pg. 238).
Third, Hume’s addition of counterfactuals came nine years after his original definition that
argued only for regularity. The addition of stating a counterfactual condition for causation,
as I noted earlier, is not synonymous with the notion of regularity as stated in the first part
of his second definition nor his earlier regularity definition. On the basis of these problems,
Mackie (1980) concluded that Hume’s definition of causation is ”imprecise and carelessly
formulated” (pg. 6).

The Experimental Design Tradition

Much more can be said regarding the problems with Hume’s analysis of causation. For
now, however, it is important to examine Hume’s role in setting the stage for the problem
of drawing causal inferences in experimental designs. In the context of educational policy
analysis, this discussion is crucial because, as it was noted, the policies and practices of
educational research under NCLB clearly articulates a preference for randomized designs in
educational research. In this section, I discuss three important contributions to the underly-
ing theory of experimental designs and the conditions that give such designs their efficacy.
The first contribution is that of John Stuart Mill who, following Hume, set down many
of the conditions of experimental designs. Indeed, Mackie (1980) notes that Mill’s work
was a vast improvement on Hume insofar as Mill recognized the existence of what Mackie
much later referred to as factors that could operate as conditions for causation. The second
contribution is that of Campbell and Stanley whose work on elucidating the confounds to
causal conclusions drawn from experimental designs is considered the classic treatment on
the subject. I also briefly examine extensions of Campbell and Stanley, including the work
of Cook & Campbell. The third contribution is that of Rubin (1974) and Holland (1986),
who provided the statistical underpinnings that give experimental designs their legitimacy
in testing causal claims.

John Stuart Mill

In discussing the origins of the experimental design tradition, it is safe to start with
ideas of Mill (1851). It should be noted, though, that many of Mill’s ideas stemmed from
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some of Hume’s basic thoughts about causation. Specifically, we find instances of Hume’s
contributions in Mill’s different methods of experimental inquiry as espoused in his Sys-
tem of Logic. Nevertheless, Mill’s ideas are fundamental to more modern treatments of
experimental logic and design.

The goal for Mill was to isolate from the circumstances that precede or follow a
phenomenon those that are linked to the phenomenon by some constant law. Mill (1851,
System, III.viii.1). That is, the approach is to test if a presumed causal connection exists
by experiment - by observing the relevant phenomena under a variety of experimental
situations. To take an example from educational policy analysis, suppose we wish to know
whether the reduction of class size causes improvement in achievement. How can that be
proved? For Mill, causal inference rested on three factors. First, the cause must precede
the effect; second, the cause and effect must be related; and third, other explanations for
the cause-effect relationship must be ruled out. Mill’s major contributions to experimental
design concerned his work on the third factor for causal inference. Mill suggested three
methods for dealing with this third factor. The first is the Method of Agreement which
states that the effect will be present when the cause is present. The second is the Method of
Difference, which states that the effect will be absent when the cause is absent. The third
is the Method of Concomitant Variation which states that the given the first two methods,
an inference of causation is stronger when other factors reasons for the covariation for the
cause and effect are eliminated.

Campbell & Stanley

Perhaps the most important instantiation of Mill’s codification of experimental logic,
and the one that has had the most profound influence in experimental studies in the social
and behavioral sciences is the work of citeA Campbell. In their small but seminal monograph
Experimental and Quasi-Experimental Designs for Research, Campbell & Stanley lay out
the logic of experimental and quasi-experimental designs. They provide the major sources
of confounding in these types of designs and describe their strengths and weaknesses with
regard to internal v. external validity.

For Campbell & Stanley, internal validity ”is the basic minimum without which any
experiment is uninterpretable” (pg. 5). In contrast to internal validity, the external validity
of an experiment concerns the capability of the findings to generalize outside the experi-
mental arrangement. These two types of validity often clash. Experimental designs that
are strong in both internal and external validity are desirable; however, the fact remains
that designs that are strong with respect to internal validity are often implemented at the
cost of strong external validity. Indeed, Campbell & Stanley suggest that ”While internal
validity is the sine qua non, and while the question of external validity, like the question of
inductive inference, is never completely answerable, the selection of designs strong in both
types of validity is obviously our ideal” (pg 5, italics theirs).

A number of factors can serve as threats to the internal validity and hence causal
conclusions that can be drawn from an experimental design. To take an example, consider
the so called ”one-group pretest-postest design”. Here, measures are taken prior to the im-
plementation of an intervention, after which the same measures are taken again. Campbell
& Stanley provide this bad example of an experiment in order to elucidate the types of
confounds that threaten causal claims that the intervention shifted the measures from the
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first to second observation. For example, the confound of history suggests that exogenous
factors taking place between the first and second observation periods could be the expla-
nation for the shift in means rather than the intervention. A second threat to the internal
validity of the experiment is maturation where endogenous changes to the individual might
induce a shift in the measures over time and that has nothing to do with the treatment
intervention. These two threats, and many others, provide a sense of the types of criticisms
that can be leveled against certain types of experimental arrangements.

To mitigate against these threats, Campbell & Stanley suggest adding a group that
does not receive the intervention - the so-called control group. The addition of the control
group along with the treatment group affords a very powerful defense against the threats to
internal validity. The process by which the addition of a control group eliminates threats
to the internal validity of an experiment is the concept of random assignment. Random
assignment in this context simply means that each individual in the defined sample has
an equal probability of being in the treatment group or the control group. With random
assignment, all threats to internal validity as discussed in Campbell & Stanley are removed.
Thus, for example in the case of maturation, we would expect that individuals in the
treatment group are as likely to experience the same endogenous changes as those in the
control group. It is the power of random assignment that lends experimental designs their
strength. However, it is important to point out that random assignment removes threats
to internal validity in infinitely large samples. In finite samples, problematic outcomes of
random assignment to treatment and control can still occur, and these problems become
more likely with smaller samples.

But what if random assignment is not feasible? In the nomenclature of Campbell
& Stanley, designs that resemble true experiments in their arrangement but do not enjoy
the benefits of random assignment are considered quasi-experimental designs. The ability
to draw causal conclusions in the context of quasi-experimental designs is directly related
to the degree of pre-treatment equivalence of the treatment and control groups. Numerous
design and analysis methods have been employed to attempt pre-treatment equivalence.
These include propensity score matching, covariate analysis, and others (see e.g ?, ?, ?). In
the end, if pre-treatment equivalence can be attained, then most (but not all) of the threats
to internal validity are addressed.

Cook & Campbell

The primary focus of Campbell & Stanley’s monograph was to outline the conditions
under which experimental arrangements were more or less robust to threats to internal
validity. In a later and equally important work, Cook & Campbell extended the Campbell
& Stanley framework to consider quasi-experimental designs that are applicable to field
settings where random assignment might not be feasible. They begin their book by stating
that ”... this book is to outline the experimental approach to causal research...” and ”...
Since this book is largely about drawing causal inferences in field research, we obviously
need to define cause” (pg. 1).

What follows in the first chapter of Cook & Campbell is an excellent overview of
positions on the problem of causation, ending in what they refer to as an evolutionary
critical-realist perspective. The evolutionary critical realist perspective of Cook & Campbell
arises first out of the activity theory of causation proposed by Collingwood (1940) among
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others, and might now be referred to as the manipulationist view proposed by Woodward
(2003). The idea is that what constitutes a cause is something that can be manipulated to
bring about an effect. The evolutionary perspective refers to the notion that the human
species (and perhaps other species) have a strong psychological predisposition to infer causal
relations, and that this predisposition is the result of biological evolution and the survival
value conferred on having such a predisposition. Their critical-realist perspective suggests
that they view causes as actually operating in the real world but that our knowledge of
these causes is conjectural and open to critical discussion. The critical nature of their work
is in line with the critical-rationalist perspective of Karl Popper (xxxx) and his students.

The Rubin - Holland Model

A very important set of papers that have provided the statistical underpinnings for
causal inference in experimental studies is the work of Rubin (1974) and Holland (1986) -
here referred to as the Rubin - Holland Model. Their papers provide a framework for how
statistical models that test causal claims are different from those that test associational
claims, and that statistical theory has a great deal to add to the discussion of causal
inference.

In the more recent of the two papers, Holland (1986) makes clear that his interest is
in ”measuring the effects of causes because this seems to be a place where statistics, which
is concerned with measurement, has contributions to make” (pg. 945, italics Holland’s).
Holland is clear, however, that experiments are not the only setting where causal claims
can be tested, but he does believe they are the simplest.

In outlining the Rubin-Holland model it is noted that their terminology of cause is
not confined to cases of randomized experiments. The notion of cause (or, interchangeably
treatment) in the Rubin-Holland model is relative to some other cause. Specifically, in
considering the phrase ”X causes Y”, the idea is that X causes Y relative to another cause
- including the possibility of ”not X”. Holland (1986) states that ”For causal inference, it
is critical that each unit must be potentially exposable to any one of its causes”. Note how
the Rubin-Holland model equates exposability to the notion of a counterfactual proposition.
For example, in studies of class size and achievement, we can envision that the class size
that a student is exposed to causes his/her achievement because we can envision exposing
the same student to other class sizes. That is, we can set up a sensible counterfactual
conditional statement of the sort ”what if the student was not exposed to a change in class
size”. Rubin and Holland thus link exposability to counterfactual propositions.

To formalize these ideas, Holland starts by defining a selection variable S that assigns
a unit u (e.g. an individual) who is a member of population U to either a treatment, t or a
control c. In randomized experiments, S is created by the experimenter, but in observational
(i.e. uncontrolled studies) such assignments often occur naturally. In the Rubin-Holland
model, the critical characteristic is that the value S(u) for each individual could potentially
be different.

The role of the outcome variable Y in the Rubin-Holland model is also crucial to
their framework. First, for the variable Y to measure the effect of the cause, Y must be
measured post-exposure - that is after exposure to the treatment 1 Then, the value of the

1The notion of temporal priority will be seen not to be necessary for causal inference.
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post-exposure outcome variable must be a result of either the cause t or the cause c defined
on particular unit. Therefore, the Rubin-Holland model conceives of the same individual
providing an outcome variable after being exposed to the treatment, Yt(u) or after being
exposed to the control Yc(u). The causal effect defined within the Rubin-Holland framework
is then the difference between Yt and Yc for unit u. That is

Yt − Yc (1)

This is the fundamental idea of the Rubin-Holland model - namely that causal infer-
ence is defined on individual units. However, as Holland (1986) points out, this fundamental
notion has a serious problem - namely, that it is impossible to observe the value of Yt and
Yc on the same unit and therefore impossible to observe the effect of t on u. Holland refers
to this as the Fundamental Problem of Causal Inference.

Holland’s approach to this fundamental problem is to draw a distinction between
a scientific solution to the problem and a statistical solution. For Holland, the scientific
solution requires that certain assumptions be made regarding temporal stability, causal
transience, and unit homogeneity. Temporal stability refers to the assumption that the
application of the control condition to a unit does not depend on when it occurred. Causal
transience refers to the assumption that the response to the treatment is not affected by
exposure of the units to the control condition - that the effect of the control condition
is transient. Finally, unit homogeneity refers to the assumption that the response to a
treatment applied to one unit is equal to the response to the treatment for another unit
- that is Yt(u1) = Yt(u2). As Holland notes, however, these assumptions are generally
un-testable but are not uncommon in supporting causal claims in laboratory science.

The statistical solution to the Fundamental Problem offered by Holland (1986) is to
make use of the population of individuals U. In this case, the average causal effect, T of t
can be defined (relative to the control group) as the expected value of the difference between
Yt and Yc over the units in the population - viz.

E(Yt − Yc) = T, (2)

where T is the average causal effect, simplified as

T = E(Yt)− E(Yc). (3)

To quote Holland (1986),”The important point is that the statistical solution replaces the
impossible-to-observe causal effect of t on a specific unit with the possible-to-estimate av-
erage causal effect of t over a population of units” (pg 947. Italics Holland’s)”.

Much more can be said about the Rubin-Holland model, but what must be discussed
is Holland’s notion of what constitutes a cause, as his views are central to the arguments
made in this chapter. Holland writes

”Put as bluntly and as contentiously as possible... I take the position that causes
are only those things that could, in principle, be treatments in experiments.
The qualification, ”in principle” is important because practical, ethical, and
other considerations might make some experiments infeasible, that is, limit us
to contemplating hypothetical experiments”.
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Holland goes on to say that the idea of what constitutes a cause is the same in both
experimental and observational studies, except that in experimental studies, the investigator
has a greater degree of control over the outcome than in the case of observational studies.
From this, Holland points out that certain variables simply cannot be causes. For example,
an attribute of an individual, such as gender or race cannot be a cause since the notion of
potential exposability of the treatment is not possible without changing the individual. We
cannot conceive of a situation in which we wish to know what an achievement score would
be if a female child were male, because potential exposability is simply not possible. In the
context of attributes, all that can be derived are associations, and although associations are
important and suggestive of variables that might moderate causal variables, they cannot be
causes in the sense of the Rubin-Holland model.

In the final analysis, four points are crucial to an understanding of the Rubin-Holland
framework. First, the goal should be to seek out the effect of causes and not necessarily the
causes of effects. For Holland, seeking out the causes of effects is valuable, but because our
knowledge of causes is provisional, it is more valuable for a theory of causation to examine
effects of causes. Second, effects of causes are always relative to other causes - particularly,
the control. For Holland, and Campbell and Stanley before him, experiments that do not
have a control condition are not experiments. Third, not everything can be a cause, and
specifically, attributes cannot be causes. The law of causality simply states, according to
Holland, that everything has a cause, but not everything can be a cause. Finally, for Rubin
(1974) and Holland (1986), there can be ”no causation without manipulation” (Holland,
1986, pg. 959).

Worrall’s Critique of Randomization

A general argument that I make in this chapter is that randomized experiments do not
represent a gold-standard of scientifically based research. This is not to say that randomized
experiments are not a powerful approach to ascertaining a specific causal question, but it
is not deserving of the approbation of the gold standard for research. A recent critique of
randomized experiments by Worrall (2004, see also ; Worrall, 2002) supports my general
view.

Worrall begins by examining the claim that randomization controls for selection bias -
a bias that is arguably of most relevance to educational research. Worrall’s argument is that
this control is achieved not through the power of random assignment as obtained from, say,
a coin toss, but rather from the experimenter not knowing in advance of the implementation
of the treatment which group the unit (student, teacher, school, etc.) has been assigned
to. Should an experimenter decide to remove, or otherwise change a unit’s assignment after
the coin toss has been made, then there is strong reason to suspect selection bias regardless
of the initial randomization. In the context of educational research, it is worth asking if
field experiments are actually blind, or more importantly, double blind. Moreover, as I will
discuss later, there may be very good reasons to understand why units select in and out of
treatments. Such information may be essential to understand in the context of scaling up
an intervention.

Worrall continues by noting that randomization is not a guarantee of scientific validity
nor is it a sure-fire approach to obtaining causal knowledge. Any reasonable proponent of
randomization and randomized experiments understands that randomization controls for
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possible alternative causes of the response only in the long-run, viz. the average after
conducting an infinite number of experiments. Therefore, the power of randomization is
probabilistic, and given that experiments most often are conducted once (particularly in
education), there is no reason statistically or epistemologically to believe that a single
experiment guarantees an insight into causality.

In the interest of space, I will not say much more about Worrall’s critique. Suffice
to say that he is not advocating dispensing with randomization. Indeed, he argues that
randomization controls for a specific type of confounder - namely selection bias, and this
control can be easily compromised in practical settings. Moreover, randomization cannot
control for all possible confounders, and its appeal to a limiting-average control does not
improve the situation. Finally, and of most importance to this chapter, Worrall warns about
the bad press given to observational studies or historically controlled trials.2 He argues that
if these types of studies are carefully conducted, we can obtain information about possible
alternative explanations for outcomes that are at least as valid as those obtaining from
randomized experiments.

In the context of educational research, I maintain along with Schneider, et. al (2007)
that the existence of very well designed large scale educational databases, such as the
Early Childhood Longitudinal Study (NCES, 1998), the Program on International Student
Assessment (OECD, 2006), or the Trends in International Mathematics and Science Study
(IEA, xxxx) are the types of observational studies that should be continually supported,
developed, and utilized to test causal propositions. To do so, however, requires a bridging
of counterfactual theories in the experimental literature and the structural (econometric)
literature. This is the subject of the next section.

Counterfactual Propositions and a Manipulability Theory of
Causation

Before discussing the structural approach for causal inference, more detailed attention
must be paid to philosophical ideas regarding counterfactual propositions that connect to
both the experimental tradition and the structural traditions. In the interest of space I will
focus on the work of Mackie (1980), as it is his work on counterfactual propositions that
helps to bridge the gap between the two traditions of causal inference. For an additional
detailed study of counterfactuals, see Lewis (1973).

Mackie and the INUS Condition

Earlier in this chapter mention was made of Mackie’s criticism of Hume’s ideas about
causality. In this section, I briefly outline Mackie’s important contribution to our under-
standing of causation, as developed in his seminal work The Cement of the Universe (1980).
I concentrate on two specific aspects of Mackie’s work on causation because his ideas appear
in later econometric treatments of causal inference, and which I believe lay a strong logical
groundwork for how to consider causal inference in educational policy analysis. The first
aspect of Mackie’s work addresses a regularity theory of causation and the second aspect

2Interestingly, Worrall’s critique is focused on medical research, not educational research where the press
against observational studies is equally bad.
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concerns a conditional analysis of causation. It should be understood that Mackie’s overall
contributions are much deeper than I have the space to present.

To begin, Mackie (1980) situates the issue of causation in the context of a modified
form of a counterfactual conditional statement. Recall that a counterfactual conditional
statement is of the form, if X causes Y, then this means that X occurred and Y occurred,
and Y would not have occurred if X had not. This strict counterfactual conditional is
problematic for the following reason; we can conceive of Y occurring if X had not. The
example used by Mackie is that of striking a match. It is possible that a flame can appear
without the act of striking the match, if, say, the match was lit by another source, for
example another lit match. Thus, Mackie suggests that a counterfactual conditional must
be augmented by considering the circumstances in which the causal event took place. In
the case of the match, the circumstances under which striking the match produces the flame
include no other potential cause of the match lighting. Thus, under the circumstances, the
flame would not have occurred if the match had not been struck.

Mackie then discusses the distinction between conditions and causes. Another ex-
ample used by Mackie is one of an individual lighting a match inside a flat of apartments,
causing an explosion due to a gas leak. The temptation is to say that the explosion was
caused by lighting the cigarette. In this regard, the gas leak is a standing condition and
therefore not the cause of the explosion. However, as it is the case that lighting a cigarette
in an apartment is not terribly unusual, but a gas leak is, we might be inclined to say that
the gas leak was the cause of the explosion and not the lighting of the cigarette.

Mackie suggests that the problem in distinguishing between conditions and causes is
addressed by considering that causes take place in a context, or what Mackie refers to as a
causal field. In addressing the question of what caused the explosion, Mackie argues that
the question should be rephrased as

”What made the difference between those times, or those cases, within a certain
range, in which no such explosion occurred, and this case in which an explosion
did occur?. Both cause and effect are seen as differences within a field; anything
that is part of the assumed (but commonly understated) description of the field
itself will, then, be automatically ruled out as a candidate for the role of cause”.

Mackie goes on to say

”What is said to be caused, then, is not just an event, but an event-in-a-certain-
field, and some ’conditions’ can be set aside as not causing this-event-in-this-field
simply because they are part of the chosen field, though if a different field were
chosen, in other words if a different causal question were being asked, one of
those conditions might well be said to cause this-event-in-that-other-field.” (pg.
35)

In the context of a causal field, there can be a host of factors that could qualify as
causes of an event. Following Mackie (1980) let A, B, C..., etc, be a list of factors that lead
to some effect whenever some conjunction of the factors occurs. A conjunction of events may
be ABC or DEF or JKL, etc. This allows for the possibility that ABC might be a cause
or DEF might be a cause, etc. So, all (ABC or DEF or JKL) are followed by the effect.
For simplicity, assume the collection of factors is finite, that is only ABC, DEF, and JKL.
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Now, this set of factors (ABC or DEF or JKL) is a condition that is both necessary and
sufficient for the effect to occur. Each specific conjunction, such as ABC is sufficient but not
necessary for the effect. In fact, following Mackie, ABC is a ”minimal sufficient” condition
insofar as none of its constituent parts are redundant. That is, AB is not sufficient for the
effect, and A itself is neither a necessary nor sufficient condition for the effect. However,
Mackie states that the single factor, in this case, A, is related to the effect in an important
fashion - viz. [I]t is an insufficient but non-redundant part of an unnecessary but sufficient
condition: it will be convenient to call this ... an inus condition.” (pg. 62)

It may be useful to briefly examine the importance of Mackie’s work in the context of
causal inference in educational policy analysis. Mackie’s concept of inus conditions alerts
us to the importance of carefully specifying the causal field in which causal claims are made,
and to attempt to isolate those factors that serve as inus conditions for causal inferences.3

Specifically, in the context of examining policies or interventions centered on improving
reading proficiency in young children, Mackie would have us first specify the causal field or
context under which the development of reading proficiency takes place. We could envision
a large number of factors that could qualify as causes of reading proficiency. In Mackie’s
analysis, the important step would be to isolate the set of conjunctions, any one of which
might be necessary and sufficient for improved reading proficiency. A specific conjunction
might be phonemic awareness, parental support and involvement, teacher training. This
set is the minimal sufficient condition for reading proficiency in that none of the constituent
parts are redundant. Any two of these three factors is not sufficient for reading proficiency,
and one alone - say focusing on phonemic awareness, is neither necessary nor sufficient.
However, phonemic awareness is an inus condition for reading proficiency. That is, the
emphasis on phonemic awareness is insufficient as it stands, but it is also a non-redundant
part of a set of unnecessary but (minimally) sufficient conditions.

Mackie’s analysis, therefore, provides a framework for unpacking the role of inus
conditions for reading proficiency. I will argue later in this chapter that the econometric
approach to causal inference provides the statistical grounding for examining Mackie’s no-
tion of the inus condition that is better suited to the context of educational policy analysis
than the randomized design approach.

Woodward and the Manipulability Theory of Causation

A manipulability theory of causation was put forth by Woodward (2003). Briefly,
Woodward first considers the difference between descriptive knowledge versus explanatory
knowledge. While not demeaning the usefulness of description for purposes of classification
and prediction, Woodward is clear that his focus is on causal explanation. For Woodward
(2003), a causal explanation is an explanation that provides information for purposes of
manipulation and control. To quote Woodward

”... my idea is that one ought to be able to associate with any successful expla-
nation a hypothetical or counterfactual experiment that shows us that and how
[sic] manipulation of the factors mentioned in the explanation ... would be a
way of manipulating or altering the phenomenon explained...Put in still another

3Pearl (2000) notes that in legal circles the convoluted meaning of the acronym inus has been replaced
by the easier acronym NESS which stands for ”necessary element of a sufficient set”.
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way, an explanation ought to be such that it can be used to answer what I call
the what-if-things-had-been-different question...” (pg. 11)

We clearly see the importance of the counterfactual proposition in the context of
Woodward’s manipulability theory. There is also a clear link to Holland’s notion of potential
exposability. Of equal importance is the invariance assumption described earlier. In fact,
Woodward links invariance to interventions in a particularly important way. He argues that
the relationship between the cause and effect must be invariant under an appropriate set
of interventions. This is crucial for Woodward insofar as invariance under interventions
distinguishes causal explanations from accidental associations.

It is certainly the case that the experimental approach allows one to ask the what-if-
things-had-been-different question. This is the centerpiece of the Rubin-Holland framework
because it builds this question at the level of the individual. However, the experimental
approach does not provide a mechanism for studying the effect of hypothetical exposability
within a well specified and theoretically grounded model. In line with Heckman, the treat-
ment effects approach is more akin to ”blind empiricism” (Heckman, 2005). The structural
approach, while in agreement with the importance of manipulation and exposability, pro-
vides a broader and more realistic context for hypothetical manipulations. In the context of
educational systems, many things can be different at one time, and these can be examined,
in principle, in the structural framework. Nevertheless, although the statistical machinery
for econometric modeling of educational data is in place, much better methods of large
scale data collection are needed that allow for precisely stated counterfactuals within well
developed models.

The Structural (Econometric) Tradition

In the previous two sections, I outlined the experimental approach, wherein the Rubin-
Holland framework the notion of exposability and its relation to counterfactual propositions
were discussed. I then reviewed Mackie’s work on a modified counterfactual, bringing in
his notion of the causal field and the inus condition. In this section I outline the structural
approach as it relates to causal inference and in contrast to the experimental paradigm dis-
cussed earlier. I will focus attention on the methodology of simultaneous equation modeling
as opposed to other standard statistical methodologies used in econometrics - such as time
series analysis. Although issues of causality appear in the time series analysis literature, the
simultaneous equations approach provides a richer framework for a discussion of causal in-
ference and is also a methodology whose extensions have been applied in educational policy
analysis under the names path analysis and structural equation modeling (see e.g. Kaplan,
2000).

This section begins with a very brief history of simultaneous equation modeling. It is
recognized that this approach to economic models is not without criticism and the form of
the criticism is briefly discussed. Regardless, I examine the issue of causal inference within
this perspective and focus heavily on the work of Hoover (?) and Heckman (2000); ? (?).

Brief History of Simultaneous Equation Modeling

Mathematical models of economic phenomena have had a long history, beginning with
Petty (1676, as cited in Spanos, 1986) However, the development of simultaneous equation
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modeling must be credited to the work of Haavelmo (1943). Haavelmo was interested
modeling the interdependence among economic variables utilizing the form for systems of
simultaneous equations.

The simultaneous equations model was a major innovation in econometric modeling.
The development and refinement of the simultaneous equations model was the agenda of
the Cowles Commission for Research in Economics, a conglomerate of statisticians and
econometricians that met at the University of Chicago in 1945 and subsequently moved to
Yale (see Berndt, 1991). This group wedded the newly developed simultaneous equations
model with the method of maximum likelihood estimation and associated hypothesis testing
methodologies (see Hood & Koopmans, 1953; Koopmans, 1950).

Formally, the simultaneous equation model can be written as

y = α + By + Γx + ζ, (4)

where y is a vector containing the outcomes of interest - the ”effects”, B is a matrix of
coefficients that allow the outcomes to be related to other endogenous outcomes and also
allows for simultaneous relations among outcomes, x is a vector of exogenous variables -
the ”causes” that are measured, Γ is the matrix of coefficients that give the strength of
the relationship between the causes and effects, and ζ is a matrix of structural disturbances
which include unmeasured causes as well as random disturbances. For the next 25 years, the
thrust of econometric research was devoted to the refinement of the simultaneous equations
approach. Particularly notable during this period was the work of Fisher (1966) on model
identification.

It is important to note that while the simultaneous equations framework enjoyed a
long history of development and application, it was not without its detractors. As Heckman
(2000) pointed out, by the mid-1960’s the dominant view was that the program of the Cowles
Commission was an ”intellectual success but an empirical failure”. Critics asserted that a
serious problem with large macro-economic simultaneous equations models was that they
could not compete with the relatively theory-free methods of the Box-Jenkins time series
models and its multivariate extensions, so called vector auto-regressive (VAR) models, when
it came to accurate predictions (e.g. Cooper, 1972). The underlying problem was related
to the classic distinction between theory-based but relatively static models versus dynamic
time-series models (see e.g. Spanos, 1986). The nature of the time-series approach and
its widespread popularity was argued to be due to the fact that time-series models are
more closely aligned with the data and therefore much better at prediction and forecasting
than the more theoretical methods arising out of the structuralist approach to econometrics
(Heckman, 2000). The counter argument to the time-series approach has been that it is not
well suited for the evaluation of economic policy or testing policy relevant counterfactual
claims.

Hoover and the Logic of Causal Inference in Econometrics

Within the structural tradition, an important paper that synthesized much of Mackie’s
notions of inus conditions for causation within the structural framework is the work of
Hoover (1990); ? (?, ?). Hoover’s essential point is that causal inference is a logical problem
and not a problem whose solution is to be found within a statistical model per se. Moreover,
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Hoover argues that discussions of causal inference in econometrics are essential and that
we should not eschew the discussion because it appears to border on realm of metaphysics.
Rather, as with medicine, but perhaps without the same consequences, the success or failure
of economic policy might very well hinge on a logical understanding of causation. A central
thesis of this chapter is that such a logical understanding of causation is equally essential
to rigorous educational policy analysis.

An important aspect of Hoover’s work that is of relevance to our consideration of
causal inference in educational policy is his focus on Mackie’s inus condition. Adopting
Hoover’s notation, recall that the inus condition focuses on a set of antecedents A as a
disjunction of minimally sufficient subsets of antecedent conditions for the consequence C.
The comprehensive set A is the full cause of C whereas Ai is a complete cause of C. An
element of Ai, say ai is a cause of C if it is an insufficient but necessary member of an
unnecessary but sufficient set of antecedents of the effect C. Thus, in line with Mackie’s
analysis, Hoover suggests that the requirement that a cause be necessary and sufficient is
too strong, but, necessity is crucial in the sense that, as in line with Holland (1986), every
consequence must have a cause.

Hoover sees the inus condition as particularly attractive to economists as it focuses
attention on some aspect of the causal problem without having to be concerned directly with
knowing every minimally sufficient subset of the full cause of E. In the context of education
policy analysis, these ideas should also be particularly attractive. As in the example of
reading proficiency used earlier, we know that it is not possible to enumerate the full cause
of reading proficiency, but we may be able to focus on an inus condition - say parental
involvement in reading activities.

From here, Hoover draws out the details of the inus condition specifically as it pertains
to the structuralist perspective. Specifically, in considering a particular substantive problem,
such as the causes of reading proficiency, we may divide the universe into antecedents
that are relevant to reading proficiency, A and those that are irrelevant non-A. Among
the relevant antecedents are those that we can divide into their disjuncts Ai and then
further restrict our attention to the conjuncts of particular inus conditions. But what of
the remaining relevant causes of reading proficiency in our example? According to Mackie,
they are relegated to the causal field. Hoover considers the causal field as the standing
conditions of the problem that are known not to change, or perhaps to be extremely stable
for the purposes at hand. In Hoover’s words, they represent the ”boundary conditions” of
the problem.

But the causal field is much more than simply the standing conditions of a particular
problem. Indeed, from the standpoint of classical linear regression, those variables that
are relegated to the causal field are part of what is typically referred to as the error term.
Introducing random error into the discussion allows Mackie’s notions to be possibly relevant
to indeterministic problems such as those encountered in educational policy analysis. How-
ever, according to Hoover, this is only possible if the random error terms are components
of Mackie’s notion of a causal field.

Hoover argues that the notion of a causal field has to be expanded for Mackie’s ideas to
be relevant to indeterministic problems. In the first instance, certain parameters of a causal
process may not, in fact, be constant. If parameters of a causal question were truly constant,
then they can be relegated to the causal field. Parameters that are mostly stable over time
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can also be relegated to the causal field, but should they in fact change, the consequences
for the problem at hand may be profound. In Hoover’s analysis, these parameters are part
of the boundary conditions of the problem. Hoover argues, most interventions are defined
within certain, presumably constant, boundary conditions. In addition to parameters, there
are also variables that are not of our immediate concern and thus part of the causal field.
Random errors, in Hoover’s analysis contain the variables omitted from the problem and
”impounded” in the causal field.

”The causal field is a background of standing conditions and, within the bound-
aries of validity claimed for the causal relation, must be invariant to exercises
of controlling the consequent by means of the particular causal relation (INUS
condition) of interest” (Hoover, 2000, pg. 222)

Hoover points out that for the inus condition to be a sophisticated approach to the
problem of causal inference, the antecedents must truly be antecedent. Often this is done
by appealing to temporal priority, but this is sometimes unsatisfactory. Hoover gives the
example of laying one’s head on a pillow and the resulting indentation in the pillow as an
example of the problem of simultaneity and temporal priority 4. Mackie, however, sees the
issue somewhat more simply - namely the antecedent must be directly controllable. This
notion of direct controllability, which is also an important feature of the Rubin-Holland
model, leads to the problem of invariance. Invariance is essential to causal claims, and
particularly counterfactual propositions. Hoover as well as Cartwright (1989) notes that
an antecedent must have the capacity to change a consequent, and that capacity must be
somewhat stable over time. The stability of a relationship in response to control of the
antecedent is the problem of invariance. It is also related to the problem of causal ordering,
as well be described later.

Employing an example by Hoover, but contextualized for educational research, con-
sider as a true data generating mechanism5 the following model for a sample of i children
(i = 1, 2, . . .N )

Ri = βPi + εi, (5)
Pi = µ + ζi, (6)

where in equation (5) Ri is a measure of reading achievement for student i, Pi is a measure of
parental reading practices associated with student i, β is a regression coefficient relating the
reading achievement to parental reading practices, and εi is a random disturbance term.6

Equation (6) simply describes the marginal distribution of parental reading practices, where
for this example it is assumed to be normal. 7. The reduced form of the equation is obtained
by inserting equation(6) into equation (5) and gathering terms. This yields

4This example was originally put forth by Kant in the context of an iron ball depressing a cushion
5The term data generating mechanism or DGP is used most commonly in the econometric literature and

refers to the actual real-life process that generated the data. A statistical model ideally captures the true
DGP.

6This model ignores the problem of nesting that is common in educational research. This is done for
simplicity of the discussion and represents no loss of generality to the argument.

7The normality assumption is not trivial and relates to the statistical issue of weak exogeneity, which is
a crucial issue for simulations of counterfactual propositions. see xxxx
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Ri = β(µ + ζi) + εi, (7)
= βµ + βζi + εi, (8)

Pi = µ + ζi. (9)

From basic statistical theory, the joint distribution of reading achievement and
parental reading practices can be factored into the conditional distribution of reading
achievement given parental practices (the regression function) times the marginal distri-
bution of reading achievement - viz.

f(R,P ) = f(R|P )f(P ) (10)

But similarly,

f(R, P ) = f(P |R)f(R) (11)

Again, under the assumption that Equations (5) and (6) represent the true data
generating model, then when these two forms are expressed in terms of model parameters,
and assuming normality, we get

f(R|P ) ∼ N(βP, σ2
ε ) (12)

f(P ) ∼ N(µ, σ2
ζ ) (13)

f(P |R) ∼ N

(
βσ2

ζP + µσ2
ε

β2σ2
ζ + σ2

ε

,
σ2

ε σ
2
ζ

β2σ2
ζ + σ2

ε

)
(14)

f(R) ∼ N(βµ, β2σ2
ζ + σ2

ε ) (15)

What is important about this discussion is the influence of hypothetical or real changes
in reading achievement or parental practices, when the true underlying data generating
model is given Equations (5) and (6). Specifically, consider a program that is designed to
increase parental reading practices. Then, this implies that the parameters of the marginal
distribution of P , namely µ or σ2

ζ will change. Noting that these parameters appear in
the conditional distribution f(P |R) they will be expected to change, and in the same vain,
the marginal distribution of reading proficiency will change. However, the true conditional
distribution f(R|P ) will remain invariant. Suppose instead that the ”reverse regression”
is wrongly specified and a policy or program is implemented to raise reading achievement
without explicitly operating on parental practices. Then, from Equations (12) - (15) we see
that the marginal distribution of reading proficiency f(R) and conditional distribution of
parental involvement given reading proficiency f(P |R) will also change. In addition, though,
the f(R|P ) will change. The conclusion that can be drawn from this example is that the true
relationship between reading proficiency and parental involvement is invariant to policies
and interventions related to parental involvement. When the wrong causal relationship is
specified, invariance does not hold.

What has been described is the problem of parameter invariance, which is crucial
for drawing causal inferences regarding policies and interventions and which, for Hoover,
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constitutes a possible strategy for determining causal order. Specifically, using historical
information from large representative longitudinal or trend data, we may be able to locate
periods of time in which no major interventions took place that would change reading
achievement or parental reading practices. Then, either causal order would yield stable
regression coefficients. However, during periods of time in which there have been policies
that were targeted toward reading achievement and policies or interventions targeted toward
parental reading practices, then examining the relative stability of the coefficients to the
different factorizations would provide information regarding causal order.

Although this is a somewhat contrived example, it is offered to make two important
points about the structural approach to causal inference in educational research. First,
as discussed by Cartwright (1989) invariance is an essential foundation for counterfactual
propositions. Using Cartwright’s notation, the antecedent of a counterfactual proposition,
say C, must have a stable causal relationship to the consequent, say E, when C comes
under direct control. To quote Cartwright, ”If C s do ever succeed in causing E s (by
virtue of being C ), it must be because they have the capacity to do so. That capacity is
something they can be expected to carry with them from situation to situation (pg. 145)”.
Second, the structural approach provides a way to examine causal orderings, and this alone
can provide important insights into the functioning of complex systems such as education.
Gaining an understanding of causal ordering and invariance is crucial for ascertaining the
behavior of policies and interventions - particularly as those policies or interventions are
being taken to scale. The structural approach can provide insights into these problems
which are completely overlooked in the experimental approach.

Heckman’s Scientific Model of Causality

Recently, Heckman (2000, 2005) provided important contribution to the problem of
causal inference from a structural econometric perspective. Heckman’s perspective centers
on two essential points. First, Heckman views causality as the property of a model of
hypothetical statements and that a fully developed model should represent a set of precisely
formulated counterfactual propositions. According to Heckman, the problem with modeling
the effects of causes, which is the mainstay of the experimental paradigm, is that such a
perspective does not speak to how the process on which causal inferences are being drawn
has been generated. In Heckman’s words.

”The ambiguity and controversy surrounding discussion of causal models are
consequences of analysts wanting something for nothing: a definition of causality
without a clearly articulated model of the phenomenon being described (i.e. a
model of counterfactuals)”. pg 2.

For Heckman, models are descriptions of hypothetical worlds and how these hypothet-
ical worlds change as a function of manipulating the variables that determine the outcomes.
Thus for Heckman, science is about constructing these causal models, and that the growth
of human knowledge is based on constructing counterfactuals and developing supportive
theories. In contrast, the experimental paradigm, now popular in education, represents a
type of ”blind empiricism” that, unguided by theory, will lead nowhere (Heckman, 2000).

Heckman’s second point is that causal inference within statistics conflates three tasks
that he argues need to be clearly separated: (a) definitions of counterfactuals, (b) identifica-
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tion of causal models from population distributions, and (c) identification of causal models
from actual data. Heckman views the definition of counterfactuals as located in the realm of
a scientific theory. The problem of the identification of causal models from population dis-
tributions falls into the purview of the mathematical analysis of identification (see Fisher).
Finally, identification of causal models from actual data is a problem for estimation and
sampling theory.

Heckman then compares his view with the approach to causal inference favored in
epidemiology and clinical drug trials, and now educational research - namely the randomized
experimental design approach described earlier. In Heckman’s view, there are two essential
problems with the experimental design approach. The first problem relates to the issue
of selection bias - namely, the experimental approach does not model the mechanism by
which counterfactuals are selected or how hypothetical interventions might be realized. This
problem is seen when units making the choices are not the same as the units receiving the
treatment - as in parents ultimately making schooling choices for the children although
the latter may be those exposed to an intervention. The structural approach, guided by
theory, can provide information that would allow the construction and testing of various
selection mechanisms. The capability of structural models to provide insights into the
selection process is potentially of great importance in education in the context of taking an
intervention to scale.

The second problem is that the experimental approach does not specify the sources of
randomness embedded in the error terms. Modeling these unobservable sources of random
variation is, according to Heckman, essential in choosing the correct estimation method.
Heckman goes on to suggest that the ”treatment” in randomized designs is a conglomerate
of factors that are not related to a theory of what actually produced the effect. Finally, and
perhaps of most relevance to educational policy analysis, the experimental approach cannot
be used for out-of-sample forecasting to new populations. In the context of educational
policy analysis, the experimental approach does not yield insights into the behavior of the
treatment when scaled up. The structural approach, on the other hand

”...like the goal of all science, is to model phenomena at a deeper level, to under-
stand the causes producing the effects so that we can use empirical versions of
the models to forecast the effects of interventions never previously experienced,
to calculate a variety of policy counterfactuals, and to use scientific theory to
guide the choices of estimators and the interpretation of the evidence. These ac-
tivities require development of a more elaborate theory than is envisioned in the
current literature on causal inference in epidemiology and statistics.” (Heckman,
2005)

Of relevance to the application of the Heckman’s approach to educational policy, the struc-
tural approach allows historically experienced policies to be examined in light of new policies
not experienced. Of course, in the context of educational policy analysis, this depends on
support for research and development into better strategies for large scale data collection.

A third and quite serious problem is that the experimental approach cannot address
the problem of general equilibrium. To take a simple example of the issue, consider the
problem of class size reduction. In the context of an experimental design studying the effects
of class size reduction on student achievement, the experimental approach would provide
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an estimate of the average causal effect of the treatment on the achievement outcome of
interest. Other variables that would be affected by class size reduction and are correlated
with achievement (e.g. teacher quality) cannot be addressed in the experimental framework,
and indeed, in the context of the experiment are averaged out due to random assignment.
However, the influence of these other variables becomes extremely serious with regard to the
success of class size reduction when the policy is taken to scale. Thus, if a policy to reduce
class size was, in fact, implemented (e.g. all middle school math classes would be reduced
to no more than 15 children in a classroom) the effect on teacher hiring, teacher quality
teacher salaries, buildings, and a host of other important variables, could all be effected.
The adjustments that take place in these other variables represent the general equilibrium
effects. Again, the experimental approach simply does not address these issues, whereas
the structural approach can provide an explicit framework for modeling these effects and
to test how various changes in the causal variable of interest manifest themselves in terms
of the general equilibrium effects.

Toward an Approach to Causal Inference Suitable For Educational
Policy Analysis

In this section, I argue that the structural approach to causal inference advocated
by Heckman (2005) as well as Hoover (1990) is better suited to a science and practice of
educational policy analysis than the experimental approach. First, it is widely accepted
that educational systems are extremely complex, hierarchically organized systems of actors.
The reality and consequences of this complexity for educational policy analysis is simply not
captured by experimental designs, which focus on relatively narrow questions that align well
with the model for clinical drug trials. Second, the experimental approach is not sufficiently
detailed in unpacking the causal mechanisms responsible for any observed treatment effect,
thus risking problems when going to scale with the treatment. Third, the experimental
approach does not provide any information on how selection might operate in the choice of
intervention or outcome. Fourth, the experimental approach does not provide a framework
for examining ”out-of-sample” predictions based on varying and realistic counterfactual
propositions. Finally, the experimental approach cannot address general equilibrium effects
that would likely operate when an intervention or policy is taken to scale. As a result,
and in line with Heckman (2005) and more generally Worrall (2002, 2004) the experimental
approach makes too many implicit assumptions and presents too simplistic a view of the
educational system to aid in building a knowledge base that can serve in developing effective
interventions within a science of educational policy analysis.

In contrast, the structural approach advocated by Heckman (2005), particularly when
supplemented by Hoover’s synthesis of Mackie’s inus conditions, contains the methodology
for formulating a number of precisely stated counterfactuals within a well specified, albeit
hypothetical model. The structural approach allows further testing of varying counterfac-
tual propositions that can reflect the complex reality of educational systems. Such modeling
efforts can provide important substantive feedback regarding how policies or interventions
might work to effect outcomes under different counterfactual scenarios, including issues of
treatment and/or outcome selection. In a related manner, the flexibility of the structural
approach allows examining general equilibrium effects under a variety of realistic scenarios
that could be faced when an intervention or policy goes to scale. The structural approach
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to educational policy analysis is much better suited to examine the potential for how poli-
cies and interventions might operate out-of-sample. Finally, the structural approach can
mitigate against the potential the ”blind empiricism” that Heckman (2005) feels character-
izes the experimental approach, and can provide a framework for theory development in
educational policy analysis.

The advantages of the structural approach to causal inferences notwithstanding, much
more work needs to be done to fully integrate this approach into educational research.
This is particularly true given the way in which path analysis and structural equation
modeling have traditionally been applied to education, sociology, and psychology. A critique
of the standard approach to path analysis and structural equation modeling as applied in
education, psychology, and sociology is given in Kaplan (2000)). The essence of the critique
is that conventional applications of structural equation modeling have not gone much beyond
the presentation of goodness-of-fit measures. Although goodness-of-fit is important as it
provides information regarding how well the model matches the data generating process,
additional information can be gained from other forms of model evaluation. Interestingly,
this view was recently expressed by Keane in a comparing the experimentalist approach
to the structuralist approach to structural modeling in economics. Keane argued for much
greater effort in testing model predictions ”out-of-sample”.

Also, much greater effort needs to be focused on precisely articulating identifying
assumptions as they pertain to conceptual or theoretical frameworks. Specifically, a con-
ceptual framework and the theoretical equations that are suggested by the framework do not
necessarily imply that causal parameters can be uniquely identified from the data. In some
cases, identifying restrictions must be imposed, and these restrictions require justification
within the theoretical framework. Furthermore, in the context of cross-sectional data, it is
essential that assumptions associated with the estimation of ”contemporaneous” equations
be carefully argued. For example, in a cross-sectional study, there is the implicit assumption
that only the exogenous variables at the current time point are relevant to explaining the
outcome, or that exogenous variables are unchanging and they capture the entire history
of the inputs, and the exogenous variables are unrelated to any unobserved set of variables
(Todd & Wolpin, 2003). All of these issues point to the need for bold theoretical develop-
ment in educational policy analysis and aggressive support for research and development in
high quality data sources that can be brought to bear on testing theoretical claims.

It might be argued that my critique of the experimental approach to education pol-
icy analysis is unfair - that this approach has always been intended to follow the clinical
trials model so as to ascertain ”what works” in education, and that it was never intended
to go beyond that. This would be a fair criticism if it weren’t for the unfortunate fact
that there is a stated preference for randomized experimental designs in the language of
No Child Left Behind. Indeed, the characterization of randomized experimental designs as
the ”gold-standard” for educational research have been found in other (U.S. Department
of Education sponsored) writings and clearly implies that other methodologies of causal
inference in education are relatively inferior - an implication that is both unfair, inaccu-
rate, and unproductive. If the goal of this aspect of NCLB was simply to advocate for a
methodology designed to ascertain a narrowly defined, albeit important, set of questions,
then the rhetoric linking randomized experiments to the all-encompassing phrase ”scientif-
ically based research” would have been avoided, and other empirical methodologies would



CAUSAL INFERENCE 24

have been given equal preference. However, the NCLB Act clearly attempts a definition of
”scientifically based research” centered on a specific methodology of science and not a prefer-
ence for multiple empirical scientific methodologies. Under NCLB, theory development and
testing that incorporates broad methodological strategies does not constitute ”scientifically
based research”. Instead, ”scientifically based research”, as defined in NCLB, constitutes a
narrow utilitarian focus on the effects of causes utilizing a specifically preferred method for
ascertaining ”what works”. And, although it is important to isolate evidenced-based inter-
ventions that can aid in ameliorating problems in education, the randomized experimental
design is not the only, or necessarily the best, ”scientifically based” approach to finding
solutions to the problems plaguing education in the United States.

The unfortunate rhetoric of NCLB aside, I also argue that neither the experimen-
tal or structural approach can legitimately stake a claim to being the gold standard for
methodological rigor. In fact, there are overlapping areas of agreement with respect to the
experimental and structural approaches and these areas of agreement are useful to exploit
as we attempt to improve methodologies for causal inference in educational policy research.
First, both approaches rightly reject the nihilistic post-modern relativism that seems to have
infected education research of late. Second, both approaches urge rigorous standards of em-
pirical data collection and measurement. Third, both approaches view causal relationships
as having to satisfy counterfactual conditional propositions.

It is this last area of agreement where I believe there is considerable overlap between
the Rubin-Holland treatment effects approach and the econometric approach advocated by
Heckman, Hoover, and others. Perhaps the main area of agreement is the notion of expos-
ability to potential treatment conditions and the general notion of manipulability articu-
lated by Woodward (2003) as the basis for inferring causation. However, given their shared
agreement in the importance of manipulability, potential exposability, and counterfactuals,
it is surprising that neither Holland nor Heckman mention Mackie’s (1980) philosophical
analysis of counterfactual propositions and inus conditions. Moreover, neither Holland nor
Heckman refer to Hoover’s (1990; ?) work on causal analysis in econometrics. Thus, a fruit-
ful area of research would be to link the structural approach to the experimental approach
via Mackie’s ideas of counterfactuals, causal fields, and inus conditions.

It is also the case that the experimental approach and structural approach can be
combined in fruitful ways. Indeed recent research has shown that experimental studies
can be used to validate the predictions developed from complex structural models. In a
recent paper, Todd and Wolpin (2006) examined the effect of a school subsidy program in
Mexico that was implemented as a randomized social experiment. In addition, they specified
a complex dynamic structural model that captured parental decisions about fertility and
child schooling. The model was capable of reproducing the treatment effect quite closely.
However, whereas the results of the social experiment stopped at the treatment effect, the
structural model allowed specification and testing of other ex ante policy scenarios that
produced information regarding general equilibrium effects. In the context of education
policy, we can imagine a similar exercise in the context of, say, class-size studies. Specifically,
we can envision attempting to estimate a model of class size, examine its prediction under
conditions similar to the class size experiment in order to use the experimental results
to validate the model, but then use the model to examine a variety of realistic policy
alternatives. Clearly, we would need to anticipate the type of data needed to conduct such
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a study.

Conclusion

As noted in the introduction, a considerable amount of research on the problem of
causal inference has been omitted from this chapter. There is simply not enough space
to cover all of the work on this problem, and I have likely even omitted writings that are
relevant to both a defense and criticism of my central arguments. Suffice to say that there
are other essential ideas that deserve further exploration within the context of advanc-
ing methodologies for causal inference in educational policy research. For example, I did
not thoroughly review the work on probabilistic causality, originally considered by Suppes
(1970), and expanded by Eells (1991). My review also did not cover the important work
of Pearl (2000) or the work of Spirtes, Glymour, and Scheines (2000). Space precluded a
full discussion of Cartwright’s notions of causes as capacities, nor have I discussed Haus-
man’s (1998) work on causal asymmetry. The work of these writers, and many others, must
be thoroughly examined as we consider building a rigorous science of causal inference for
education policy research.

Space limitations notwithstanding, the goal of this chapter was to review certain cen-
tral ideas of causal inference and to argue for an approach to causal inference in educational
policy analysis that rests on philosophical and methodological work arising from macroeco-
nomic policy modeling. The arguments raised in this chapter speak to the need to support
basic and applied research on methodologies for non-experimental and observational stud-
ies and to vigorously support research and development into the design and analysis of
large scale databases as a means of testing out invariance assumptions and hypothetical
counterfactual experiments. In summary, although it is clear that much more philosophical
and methodological work remains, it is hoped that this chapter will stimulate a broader
discussion on the development of a rigorous empirical science and practice of educational
policy analysis.
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